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Zusammenfassung

Das Federmassemodell, auch spring-loaded inverted pendulum (SLIP), beschreibt

die Schwerpunktsbewegung biologischer Laufsysteme. Dieses Modell bildet die Beine

als lineare Federn mit konstanten Parametern ab. In biologischen Systemen können

sich federartige Eigenschaften der Gliedmaßen jedoch zeitlich ändern. Daher wurde

in der vorliegenden Arbeit untersucht, inwieweit Variationen der Federparameter

während des Bodenkontaktes die Dynamik des Federmassemodells beeinflussen.

Bei anfänglicher Vernachlässigung zusätzlicher Dämpfung konnte stabiles Hüpfen

nur für Steifigkeitsabsenkung bei gleichzeitiger Ruhelängenerhöhung im Kontakt ge-

neriert werden. Mit zusätzlicher Dämpfung konnte stabiles Hüpfen für einen größeren

Bereich von Steifigkeits- und Ruhelängenvariationen erzeugt werden. Dabei konn-

ten nun auch Steifigkeitserhöhungen oder Ruhelängenabsenkungen stabiles Hüpfen

ermöglichen. Innerhalb des vorgesagten Kontrollraumes für stabiles Hüpfen besteht

keine Notwendigkeit für präzise Parametereinstellungen.

Weiterhin wurde die Robustheit der stabilen Hüpflösungen untersucht. Dazu wur-

de das Einzugsgebiet der stabilen Fixpunkte bestimmt. Die Ergebnisse zeigen einen

Kompromiss zwischen maximaler Stabilität und maximaler Robustheit. Zusätzliche

Dämpfung erhöhte die Robustheit nur geringfügig. Dafür vergrößerte sich das Gebiet

des jeweiligen Robustheitsgrades.

Als drittes Kriterium für erfolgreiche Bewegung wurde neben Stabilität und Ro-

bustheit die Energieeffizienz betrachtet. Dazu wurden eine auf der im System ver-

richteten mechanischen Arbeit basierende Kostenfunktion, sowie das Verhältnis von
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elastischer und Gesamtarbeit berechnet. Bei zusätzlicher Dämpfung vergrößerten

sich die Gebiete für robustes Hüpfen. Gleichezeitig erhöhte sich das Maximum der

Bewegungskosten nur geringfügig. Allerdings sank dabei das Verhältnis von elasti-

scher und Gesamtarbeit dramatisch, d.h. es wurde weniger Arbeit passiv von der

Feder geleistet, wodurch das Hüpfen weniger effizient wurde.

Im Nachfolgenden wurde das Modell modifiziert, indem die Anpassung der Bein-

steifigkeit in Abhängigkeit der Geschwindigkeit erfolgte. Die Einbeziehung solcher

muskelartigen Eigenschaften erhöhte die Stabilität in hohem Maße. Auch bezüglich

der Robustheit war dieser Modellansatz von Vorteil. Anders als im Modell mit

zeitabhängiger Beinsteifigkeit waren nun Hüpflösungen mit maximaler Robustheit

schon bei niedrigen bis mittleren Bewegungskosten möglich. Außerdem existieren für

das modifizierte Modell Lösungen mit optimaler Stabilität und Robustheit. Durch

Einbeziehung von Steifigkeitsanpassungen in der Flugphase wurde der Kontrollraum

erheblich erweitert.

Schließlich wurde untersucht, wieviel Variation der Beinfederparameter beim

Hüpfen auf der Stelle auftritt. Dazu wurden, ausgehend von gemessenen Bodenreak-

tionkräften und Schwerpunktsbewegungen, die Ruhelängen- und Steifigkeitsprofile

abgeschätzt. Die Versuche beinhalteten fünf Hüpffrequenzen im Bereich von 1,2 bis

3,6 Hz. Die Ergebnisse zeigen, dass obwohl Beinsteifigkeit und Ruhelänge während

des Bodenkontaktes nicht konstant sind, für die meisten Frequenzen die Schwer-

punktsdynamik in guter Näherung der des linearen Federmassemodells ähnelt. Die

Ruhelängen- und Steifigkeitsprofile für langsames und schnelles Hüpfen weichen

deutlich voneinander ab. Außerdem existieren für 1,2 Hz zwei unterschiedliche Kon-

trollstrategien, die jeweils von einer Hälfte der Probanden angewendet wurden.

Da Hüpfen eine spezielle Form des Rennens im Sinne von Rennen mit verschwin-

dender horizontaler Komponente ist, können diese Erkenntnisse helfen, leistungs-

and anpassungsfähigere Laufsysteme und Beinprothesen durch Ausnutzung der zu-

grundeliegenden Systemmechanik zu entwickeln.
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Abstract

The spring-loaded inverted pendulum (SLIP) describes the planar center-of-mass

dynamics of legged locomotion. This model features linear springs with constant

parameters as legs. In biological systems however, spring-like properties of limbs

can change over time. Therefore, in this thesis it is asked how variation of spring

parameters during ground contact would affect the dynamics of the spring-mass

model.

Neglecting damping initially, it is found that decreasing leg stiffness and increasing

rest length of the leg during stance phase are required for orbitally stable hopping.

With damping, stable hopping is found for a larger region of rest-length rates and

leg-stiffness rates. Here also increasing leg stiffness and decreasing rest length can

result in stable hopping. Within the predicted range of leg parameter variations for

stable hopping there is no need for precise parameter tuning.

Furthermore, robustness of the stable hopping solutions is addressed. For this,

the basin of attraction of the stable fixed points is determined. Results show a

trade-off between maximum stability and maximum robustness. Additional velocity-

dependent damping only slightly increases robustness. However, the areas of a given

robustness level are enlarged.

As a third criterion for successful motion energy efficiency is investigated. To do

so, the work-based cost of movement as well as the work ratio between elastic and

total work are estimated. Similarly to robustness, the areas of a given maximum

cost of movement grow for increasing additional damping. At the same time the
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maximum cost of transport only slightly increases. However, the work ratio decreases

drastically, i.e. less work is done passively by the spring and hopping becomes less

efficient.

The model is also modified to include velocity-dependent leg stiffness. Incor-

porating this muscle-like property, considerably improves stability. Unlike in the

model with time-dependent leg stiffness, the tradeoff between robustness and cost

of movement is less pronounced. Hopping solutions with maximum robustness may

be achieved at low to medium cost of movement. Furthermore, in the modified

model there are sweet spots with optimal stability and robustness. If flight control

is included, the accessable control space is spread substantially.

Finally, it was investigated how much variation of leg-spring parameters is present

during vertical human hopping. In order to do so, rest-length and leg-stiffness pro-

files were estimated from ground-reaction forces and center-of-mass dynamics ap-

prehended in human hopping experiments. Trials included five hopping frequencies

ranging from 1.2 to 3.6 Hz. The results show that, even though leg stiffness and rest

length vary during stance, for most frequencies the center-of-mass dynamics still

resemble those of a linear spring-mass hopper. Rest-length and leg-stiffness profiles

differ for slow and fast hopping. Furthermore, at 1.2 Hz two distinct control schemes

were observed.

As hopping gaits form a subset of the running gait (with vanishing horizontal

velocity), these results may help to improve leg design in robots and prostheses.



5

1. Introduction

1.1. The Spring-Loaded Inverted Pendulum

Judging by our everyday experience legged locomotion appears a rather simple task.

We walk and run without thinking about it. However, if studied in more detail legged

locomotion turns out to be somewhat contradictory. On the one hand, due to its

complexity the full interaction of the skeletal system, muscles, tendons and nerves

necessary to generate locomotion is not fully understood. On the other hand, global

leg behavior is surprisingly spring-like (Alexander, 1984).

So far, it is unclear where the global spring-like behavior of the leg originates.

Some studies, e.g. Brown and Loeb (1997), suggest that non-linear visco-elastic

properties of the muscle-tendon complex, so-called “preflexes”, are the main con-

tributor, especially during fast movements. Others, e.g. Bobbert and Casius (2011),

argue that muscle activation determines global leg behavior. Also, combinations of

preflexes and feed-forward patterns have been suggested (Cham et al., 2000).

In any case, the spring-like leg behavior motivated an elastic model of legged

locomotion, the spring-loaded inverted pendulum or SLIP model (Blickhan, 1989;

McMahon and Cheng, 1990; Geyer et al., 2006). In the SLIP model the body is

represented by a point mass m and the legs are described by linear springs with

stiffness k, rest length l0 and angle of attack α0, see Figure 1.1. This approach

is supported by the force-length function of the leg found experimentally, i.e. the

relationship between ground-reaction force and momentary leg length (Farley, 1991;
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Figure 1.1.: SLIP model for (a) running and (b) walking. The model consists of a
point mass m and attached massless leg springs (with rest length l0,
stiffness k and angle of attack α0). TD and TO denote touchdown and
takeoff, respectively. For the bipedal SLIP model, center-of-mass tra-
jectory during double support phases is color-coded black, while single
support is represented by the color of the supporting leg.

Blickhan and Full, 1993). The SLIP model can be considered as a “template model”

(Full and Koditschek, 1999) as it is a highly reduced model still preresenting the

key characteristics for the center-of-mass dynamics of human gaits.

Furthermore, the SLIP model describes fundamental parameter dependencies in

legged locomotion, e.g. Seyfarth et al. (2002). An important criterion for locomotion

is orbital stability, i.e. the notion, how fast small perturbations are compensated and

periodic motion is re-established (Strogatz, 1994; Dingwell et al., 2007). As shown by

Seyfarth et al. (2002), the SLIP model for running exhibits mechanical self-stability

for an appropriate choice of initial velocity, leg stiffness and angle of attack. Small

deviations from a periodic solution converge back to the periodic solution. The

work of Daley (2009) and Rummel et al. (2010) complements the notion of orbital

stability with the notion of robustness, i.e. which magnitude of perturbations may

be compensated. For SLIP walking, a trade-off between stability and robustness

was found (Rummel et al., 2010).
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As the SLIP model represents a considerable reduction of complexity with respect

to real legs, its predictions have to be put under careful scrutiny. For instance, the

SLIP model is energy-conservative. Thus, it only exhibits neutral stability with

respect to energy perturbations, i.e. if a perturbation is encountered the system

transitions from the original periodic solution to a new periodic solution (Holmes

et al., 2006; Maus et al., 2010). Biological systems however show the ability to

compensate various energy losses or perturbations. Also, questions regarding energy

efficiency and cost of transport (Srinivasa and Ruina, 2006) of biological and artificial

legged systems may not be addressed with this model.

1.2. Natural Variability

Real legs deviate from the perfect spring. In fact, muscles clearly have visco-

elastic properties. This visco-elasticity may explain the landing-takeoff asymme-

try observed in running (Cavagna, 2006; Lipfert, 2010) and hopping (Farley, 1991;

Kuitunen et al., 2011), that cannot be described by the conservative SLIP model

with fixed leg parameters. In Cavagna and Legramandi (2009) it is hypothesized

that due to the force-velocity function of muscles greater ground-reaction forces are

generated during compression than during decompression. This may be interpreted

as a change in leg stiffnessor as a variable joint stiffness as found in human running

(Guenther and Blickhan, 2002; Peter et al., 2009) and in simulation (Rapoport,

2003). The global force-length functions for human hopping and running also indi-

cate that leg stiffness changes during ground contact (Farley, 1991; Lipfert, 2010).

In addition, experimantal data for hopping and running, e.g Lipfert (2010) and

Kuitunen et al. (2011), show that leg length, i.e. distance between center of mass

and center of pressure, is larger at takeoff than at touchdown.

Leg compliance and its adaptation in response to changing environmental condi-

tions are hypothesized to be crucial for successful locomotion, e.g. Grimmer et al.
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Figure 1.2.: Forms of variability. This thesis is focussed on time-varying parameters.

(2008). Thus, recent developments in robotics reflect the concept of variable compli-

ance; for an excellent overview discussing different design strategies see Van Ham et

al. (2009) or the introduction of Schuy et al. (2012). As tunable compliant actuators,

in contrast to serial-elastic actuators (SEA), allow to change stiffness on-the-fly, i.e.

at high speed, it was argued by Hurst et al. (2004) that this concept “could result

in an effective actuation method for highly dynamic legged locomotion”.

Following this argument, it may be beneficial to consider the natural variability

of human gait as a fundamental system property, rather than trying to develop

more and more precise, yet complex systems and control schemes. In order to do

so, biomechanical models may be modified to incorporate the parameter variations

found experimentally, i.e. internal variability.

Internal variability encompasses recurring, in contrast to temporary or one-time,

variations of system parameters, see Figure 1.2, which may be classified as

• offset, e.g. left-right asymmetry of the leg parameters (angle of attack α1 6= α2,

leg stiffness k1 6= k2, rest length l1 6= l2; Merker et al. 2011),

• drift, e.g. time variability of the leg parameters during ground contact (rest

length l0(t), leg stiffness k(t) or k(v); the focus of this thesis) or

• noise, e.g. stochastical step-to-step variations of the leg parameters.
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1.3. Contributions of the Thesis

A common approach to improve explanatory and predictive power of the SLIP model

is to increase its structural complexity, following the template-anchor concept of

Full and Koditschek (1999), e.g. by adding a trunk (Maus et al., 2010) or a foot

(Maykranz et al., 2009). Additional structures, however, complicate analysis and

therefore, fundamental insights might be overlooked. In the present thesis the SLIP

remains structurally unchanged, but leg parameters (rest length, leg stiffness) are

assumed to be variable during ground contact, see Chapter 2.

There are already studies considering spring-mass models with either variable rest-

length (Cham and Cutkosky, 2003; Schmitt and Clark, 2009) or variable stiffness

(Koditschek and Buehler, 1991; Komsuoglu, 2004; Kalveram et al., 2010) during

contact, but so far there was no systematic investigation addressing the interac-

tion of the two. Most importantly, simultaneous variation of rest length and leg

stiffness during contact presents a simple approach to manipulate spring energy

and thus system energy during contact, while maintaining periodic solutions. Pos-

itive parameter rates correspond to energy input, i.e. actuation, negative ones to

energy withdrawal, i.e. (functional) damping. Thus, for appropriate choices of pa-

rameter rates (and initial conditions) system energy at touchdown and takeoff will

be the same. Hence, the motion will be periodic, even though the system is non-

conservative during stance. For that reason, changing rest length and leg stiffness

simultaneously during contact allows to model visco-elastic muscle properties with-

out the need to introduce additional damping. In the following, this approach is

also referred to as the variable-leg-spring (VLS) concept.

In order to simplify analysis as much as possible, the system is reduced to vertical

hopping, which can be considered as running without horizontal velocity. The leg

operation is reduced to changes in leg shortening and extension. Hence, no rotational

movements like swinging the leg forth and back are taken into account.
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Within this approach it is hypothesized that the landing-takeoff asymmetry ob-

served in bouncing gaits can be understood as a requirement for stable hopping.

For this, appropriate leg parameter variations during ground contact resulting in

orbitally stable hopping cycles are investigated. Additional damping is expected to

be beneficial, but contrary to the findings of Komsuoglu (2004) not necessary for

stable hopping. Such supportive leg adjustments could provide the basis for more

functional locomotory systems operating at a variety of speeds and gaits.

Following Daley (2009) and Rummel et al. (2010), the work presented here com-

bines the notion of orbital stability with the concept of robustness. Similarly to the

results for walking (Rummel et al., 2010), a trade-off between stability and robust-

ness is expected for hopping. Additional damping is expected to further increase

robustness, as damping increases the tolerance for perturbations in apex height and

thus, the size of the basin of attraction. Moreover, damping is expected to enlarge

the area of a given level of robustness.

To further compare functional damping via leg softening on the one hand and

additional velocity-dependent damping on the other, energy efficiency for increasing

damping coefficient is investigated. In order to do so, a work-based cost of movement

inspired by Srinivasa and Ruina (2006) and Rummel et al. (2010) as well as the ratio

between elastic and total work are calculated. As additional damping increases

the non-elastic properties of the hopper for a given parameter setup, less efficient

hopping for increasing damping is expected.

Non-linearities in the variation of leg parameters will most likely be beneficial.

Schmitt and Clark (2009) were able to show that a sinusoidal rest-length varia-

tion along with an appropriate leg-placement protocol results in stable and robust

running. Following a recent study regarding the force-velocity function of muscles

during hopping (Haeufle et al., 2010), a velocity-dependent stiffness protocol may

also be considered as an appropriate approach. In Haeufle et al. (2010) the time-

dependency of leg properties during ground contact was not explicitly prescribed but
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an outcome of the muscle dynamics. Therefore, in Chapter 3 leg-stiffness variation

is considered to be velocity-depedent, i.e. reactive. Incorporating this muscle-like

property to the VLS model is assumed to further increase stability.

Two hopping models are investigated. In the first model, leg stiffness is allowed

to vary only during ground contact and held constant otherwise. However, for

running the domain of stable solutions can be enlarged by introducing swing leg

control (Blum et al., 2010). In this control scheme, variation of leg parameters

prior to touchdown compensates perturbations of ground level and thus, allows to

access previously unstable periodic solutions and even further stabilize already stable

solutions. Thus, the second model incorporates a modified swing-leg control, as it

is assumed to further improve hopping stability.

By adapting the VLS concept to experimental data, it is the aim of Chapter 4

to investigate the behavior of leg stiffness and rest length in vertical human hop-

ping. It is assumed that the spring-like leg function in human hopping results from

the interaction of non-linear leg properties: Leg stiffness and rest length may be

non-constant, nevertheless generating a linear force-length function on leg level.

Furthermore, hopping below the preferred frequency is assumed to exhibit differ-

ent rest-length and leg-stiffness profiles than hopping with frequencies above the

preferred one, as suggested by Farley (1991).
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2. The Variable-Leg-Spring Concept

The following chapter is based on Riese and Seyfarth (2012a,b). The analyses and

results in this chapter are the contribution of the author of this thesis. Discussions

with A. Seyfarth, S. Grimmer and F. Peuker were appreciated.

2.1. Theoretical Considerations

2.1.1. Equation of Motion

The spring-mass model consists of a point mass m on top of a massless spring

with rest length l0 and stiffness k (Blickhan, 1989; McMahon and Cheng, 1990),

see Figure 2.1. The spring contributes to the system dynamics only during ground

contact, in the one-dimensional case for center-of-mass position y ≤ l0. Additional

to the original model, velocity-dependent damping is included during stance. Thus,

during flight phase the model is subjected solely to gravitational force. With gravity

opposing the spring force during contact phase, the equation of motion is

mÿ =

−mg, y > l0,

k(l0 − y)− δẏ −mg, y ≤ y0,

(2.1)

where ˙ := d/dt denotes the time derivative.

As a first-order approximation for variable leg-spring parameters, rest length and

leg stiffness are allowed to change linearly with time t between touchdown (TD) and
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m

Figure 2.1.: Variable-leg-spring (VLS) hopper. The model consists of a point mass
with an attached massless leg and a parallel damper. Leg-spring pa-
rameters, rest length l0 and leg stiffness k, change linearly with time
during contact phase, Equation 2.2, and are held constant during flight
phases. Reset of spring parameters to their respective touchdown value,
lTD and kTD, takes place at apex, i.e. the highest point of center-of-mass
trajectory.

takeoff (TO),

l0(t) = lTD + l̇0(t− tTD), (2.2a)

k(t) = kTD + k̇(t− tTD). (2.2b)

During flight phases, rest length and leg stiffness are kept constant and are reset

at each apex to lTD and kTD, respectively. The linear dependency in Equation 2.2

was chosen, because the ideal timing and shape of actuation is still under debate

(see Chapter 1). This approach is a considerable simplification but will nevertheless

describe the fundamental behavior of a spring-mass system with variable leg-spring

parameters during stance.

In order to evaluate the system’s capacity to cope with additional, continuous

energy losses during contact and to better understand the effect of active energy re-

moval via leg adaptation, viscous damping was included for part of the simulations.
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Parameter

gravitational acceleration g
mass m
rest length lTD

leg stiffness kTD

rest-length rate l̇0
stiffness rate k̇
damping coefficient δ

Table 2.1.: Parameters of the VLS model.

Impacts are neglected in this thesis. Incorporating a more realistic ground-contact

model and leg masses would undoubtedly change the dynamics of the model. How-

ever, no or only small impacts are observed in human hopping, indicating a minor

contribution to hopping dynamics (Farley, 1991; Kuitunen et al., 2011).

In total, the system is described by seven parameters, see Table 2.1. This number

can be reduced to four dimensionless parameters using a uniquely defined normaliza-

tion with respect to g, m and lTD, see Table 2.2. Accordingly, dimensionless vertical

position Y = y/lTD and dimensionless time τ =
√
g/lTD (t − tTD) are introduced.

The dimensionless equation of motion during stance now reads

Y ′′ = (K +K ′τ)(1 + L′0τ − Y )−DY ′ − 1, (2.3)

where ′ denotes the time derivative with respect to τ . If not mentioned otherwise,

dimensionless quantities are used from now on.

Parameter

(dimensionless) leg stiffness K = kTD lTD(mg)−1

(dimensionless) stiffness rate K ′ = k̇ (lTD/g)3/2m−1

(dimensionless) rest-length rate L′0 = l̇0 (g lTD)−1/2

(dimensionless) damping coefficient D = δ (lTD/g)1/2m−1

Table 2.2.: Normalized parameters of the VLS model.
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By introducing the coordinate system co-moving with the instantaneous rest

length,

X := Y − 1− L′0τ, (2.4)

and by omitting damping for the time being, the equation of motion during stance

may be further simplified to

X ′′ = −(K +K ′τ)X − 1. (2.5)

This choice also is of advantage because it holds that XTD = XTO ≡ 0, thus simply-

ing the conditions for the phase transitions between flight and stance.

The simplified equation of motion is a special case of the Riccati differential

equation, which is not generally solvable. However, the solution of Equation 2.5

could be computed directly, using Mathematica (v7.0, Wolfram Research Inc.,

Champaign , IL, USA),

X(τ) =
K +K ′τ

K ′
X ′TD 0F1

(
;
4

3
;−(K +K ′τ)3

9K ′2

)
0F1

(
;
2

3
;− K3

9K ′2

)
(2.6)

− K

K ′
X ′TD 0F1

(
;
4

3
;− K3

9K ′2

)
0F1

(
;
2

3
;−(K +K ′τ)3

9K ′2

)

− K +K ′τ

K ′2
0F1

(
;
4

3
;−(K +K ′τ)3

9K ′2

)
×
[
(K +K ′τ) 1F2

(
1

3
;
2

3
,
4

3
;−(K +K ′τ)3

9K ′2

)
−K 1F2

(
1

3
;
2

3
,
4

3
;− K3

9K ′2

)]

+
1

2K ′2
0F1

(
;
2

3
;−(K +K ′τ)3

9K ′2

)
×
[
(K +K ′τ)2 1F2

(
2

3
;
4

3
,
5

3
;−(K +K ′τ)3

9K ′2

)
−K2

1F2

(
2

3
;
4

3
,
5

3
;− K3

9K ′2

)]
,
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with

pFq(a1, ..., ap; b1, ..., bq; z) :=
∞∑
i=1

p∏
j=1

Γ(j + aj)

Γ(aj)

q∏
k=1

Γ(bk)

Γ(k + bk)

zi

i!
(2.7)

being the generalized hypergeometric function.

2.1.2. Landing-Takeoff Asymmetry

The variation in rest-length influences the asymmetry of touchdown and takeoff

height, YTO = YTD + L′0τst with stance time τst, as well as the asymmetry of touch-

down and takeoff velocity. However, the variation in rest length has no influence on

the asymmetry of the ground-reaction force, because the variation is linear in time.

In the coordinate system co-moving with the instantaneous rest length, Equation

2.4, only the leg-stiffness variation affects the ground-reaction force, see Equation

2.5. As Y ′′ = X ′′, this also holds in the resting coordinate system, the only difference

being an offset between touchdown velocities, X ′TD = Y ′TD − L′0.

Equation 2.5 allows to interpret the system as a sequence of spring-mass systems

with instantaneous leg stiffness K(τ) = K + K ′τ . Thus, according to Geyer et al.

(2006), instantaneous stance time τst(τ) is

τst(τ) =
2√
K(τ)

[
π + arctan

(√
K(τ)X ′TD

)]
. (2.8)

As X ′TD < 0 is fixed, instantaneous stance time decreases for increasing leg stiffness

and vice versa.

The result of this stiffness dependency becomes clear if one imagines a switch of leg

stiffness at the instant of maximum leg compression. The compression phase with

stiffness K1 will last for τst,1/2, whereas the decompression phase with stiffness K2

will last for τst,2/2. If stiffness decreases, K1 > K2, then according to Equation 2.8

decompression will take longer than compression, τst,1 < τst,2. Therefore, the system
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exhibits the expected landing-takeoff asymmetry. Maximum force will appear in

the first half of total stance time, τst = (τst,1 + τst,2)/2. Accordingly, for increasing

stiffness maximum force will appear in the second half of total stance time.

This reasoning holds for any monotonic variation of leg stiffness during stance.

If leg stiffness decreases, any displacement during compression will take less time

than the corresponding displacement during decompression. Thus, for monotonically

decreasing leg stiffness maximum force will appear in the first half of stance time.

2.1.3. Periodicity

Variations of rest length and leg stiffness during contact present a simple approach

to manipulate spring energy, and thus system energy during contact, while main-

taining periodic solutions. Positive parameter rates correspond to energy input, i.e.

actuation, negative ones to energy withdrawal, i.e. (functional) damping, see Sec-

tion 2.1.6. Hence, for appropriate choices of parameter rates (and initial conditions),

system energy at touchdown and takeoff will be the same. Thus, the motion will be

periodic, even though the system is non-conservative during stance.

As the differential equation is of second order, two initial conditions are required.

Choosing instant of apex with Ẏ ≡ 0 as a Poincaré section, only one free initial

condition, initial apex height Y0, remains. Thus, analysis reduces to a one-step

Poincaré map of hopping height, with mapping function Y0,i+1 = f(Y0,i). A

periodic solution then is equivalent to a fixed point Y ∗, with Y ∗ = f(Y ∗).

2.1.4. Stability

The slope of the Poincaré map at the fixed point, i.e. the eigenvalue λ of the

Jacobian matrix of the periodic solution, is direct measure for orbital stability: If

|λ| = |dY0,i+1/dY0,i (Y
∗)| < 1 is satisfied, the solution is orbitally stable, i.e. slightly

perturbed apex heights converge to the fixed point (Strogatz, 1994), see Figure 2.2.
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Figure 2.2.: Apex return map. Stable and unstable fixed points are shown, Y ∗s and
Y ∗u respectively. Initial conditions with 1 < Y0,i < Y ∗u converge towards
Y ∗s . Within the areas shaded gray the point mass hits the ground, i.e.
Y0,i+1 ≡ 0.

Subsequently, stability always refers to orbital stability as defined here.

The mapping function Y0,i+1 = f(Y0,i) required to proof orbital stability is a

composition of three maps, f = f3 ◦ f2 ◦ f1. This is due to the phase transitions

at touchdown and takeoff (sequence of flight phase, stance phase and again flight

phase, see Figure 2.1).



2.1. Theoretical Considerations 19

The map f1 describes the free fall until touchdown. As Y ′0,i ≡ 0 (choice of

Poincaré section) and YTD ≡ 1 (normalization of Y ), f1 simply reads

Y ′TD = f1(Y0,i) =
√

2(Y0,i − 1). (2.9)

Similarly, the map f3 for the flight phase between takeoff and apex i+ 1 is based on

conservation of energy during flight phase,

Y0,i+1 = f3(YTO, Y
′
TO) = YTO +

1

2
Y ′ 2TO. (2.10)

The non-trivial part of constructing f is deriving the stance-phase map f2,

f2 : Y ′TD 7−→ (YTO, Y
′
TO), (2.11)

or in the co-moving coordinate system, with XTD = XTO ≡ 0,

f̃2 : X ′TD 7−→ X ′TO (2.12)

For this, the solution of the equation of motion, given by Equation 2.6, is required.

However, the result is so complex that X(τ) = 0 may only be solved for the trivial

case τ = 0. Thus, stance time τst, with X(τst) = 0, cannot be derived. Therefore,

X ′TO (or YTO = 1 + L′0τst and Y ′TO = X ′(τst) + L′0) cannot be computed, i.e. the

return map cannot be constructed analytically.

Nevertheless, to support the numerical findings in Section 2.3, a simplified problem

may be investigated as proof of concept. In this simplified problem, leg stiffness and

rest length are constant, but change instantaneously at the instant of maximum leg

compression, Ymin. Then, the return map reads

Y0,i+1 = Ymin +
1

2
(K + ∆K)(1 + ∆L0 − Ymin)2, (2.13)
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where Ymin satisfies the conditions

Y ′(Ymin) = 0, (2.14a)

0 < Ymin < 1, (2.14b)

Y0,i = Ymin +
1

2
K(1− Ymin)2. (2.14c)

The last condition follows from the conservation of total energy, which during stance

reads Etot = Y0 = Y + 1
2
Y ′2 + 1

2
K(1 − Y )2. Furthermore, K + ∆K > 0 and

1 + ∆L0 > Ymin have to be satisfied. Otherwise, leg stiffness vanishes during stance

or the new rest length would be smaller than Ymin, respectively. Thus, in both cases

the mass point would hit the ground.

An additional condition is imposed by the constraint of periodic hopping, Y0,i+1 =

Y0,i, which may also be written as

K

(K + ∆K)
=

(1 + ∆L0 − Ymin)2

(1− Ymin)2
. (2.15)

This condition can be used to fix ∆K. Then, the derivative of the return map at

the fixed point Y ∗ reads

λ :=
dY0,i+1

dY0,i

(Y ∗) =
z2 + z −K∆L0

z2 + z + zK∆L0

, (2.16)

where z :=
√

1 + 2K(Y ∗ − 1) was introduced for notational ease.

λ has a pole of order 1 for ∆L0 = −(1 + z)/K. Here, only small variations of rest

length , ∆L0 � 1, are considered and λ simplifies to

λ = 1−∆L0
K

z
. (2.17)

Stable hopping requires |λ| < 1. With K > 0 and z > 0, this condition only is

satisfied for ∆L0 > 0. According to Equation 2.15 this leads to ∆K < 0. Thus,
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stable hopping with an instantaneous change in rest length and leg stiffness at the

instance of maximum leg compression requires an increase in rest length and a

decrease of leg stiffness.

The dynamics described by this simplified model are likely to differ from the

dynamics with linear-in-time leg-spring parameters. However, for ever decreasing

intervals (in which the spring parameters are kept constant) and ever decreasing

parameter changes, the models merge into each other. Thus, it is likely that the

stability requirement (increasing rest length and decreasing leg stiffness) is preserved

and also valid for linear-in-time variations of the leg-spring parameters.

2.1.5. Robustness

Robustness is defined here as the largest step the model could either take up or

down while maintaining the hopping movement. Within the basin of attraction

initial conditions will converge towards a periodic solution, see Figure 2.2. Thus,

robustness ∆Y is the minimum distance from the fixed point to the boundaries of

the effective basin of attraction, Ymin and Ymax respectively,

∆Y = min(Ymax − Y ∗, Y ∗ − Ymin). (2.18)

In principle, the basin of attraction is confined between the touchdown condition,

Y0 > 1, and the unstable fixed point. For initial apex heights Y0 ≤ 1 the leg will not

be initialized and the mass point follows a free-fall trajectory until ground contact,

whereas beyond the unstable fixed point Y ∗u all initial conditions diverge.

However, two effects may cause the hopper to fall down, i.e. the point mass to hit

the ground, before encountering the theoretical boundaries of the basin of attrac-

tion. Damping, whether functional or velocity-dependent, may prevent take-off for

sufficiently small initial apex heights and a given choice of L′0, as the energy with-

drawal may be not compensable with this actuation. For sufficiently large initial
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apex heights the model may hit the upper falling-down barrier YGC. Beyond YGC

the spring cannot store sufficient initial energy and thus, properly support the point

mass, resulting in total leg compression and ground contact (GC) of the point mass.

For a linear spring with fixed parameters the maximum apex height is easily

calculated. The system is energy-conservative, so system energy satisfies

E = Y0 = Y +
1

2
Y ′2 +

1

2
K(1− Y )2. (2.19)

For the minimum apex height resulting in falling down, YGC, ground contact Y = 0

is reached with zero velocity, Y ′ = 0. Thus, for successful hopping with a constant

linear spring initial values have to satisfy

Y0 < YGC =
1

2
K. (2.20)

As the decreasing effect of leg softening exceeds the increasing effect of leg lengthen-

ing regarding the spring’s capacity to store energy, variable-leg-spring hoppers with

rest length and leg stiffness rates lying in the region of stable hopping also observe

this limit.

The limit for the maximum apex height may also be calculated for a constant linear

spring with additional velocity-dependent damping. However, as the calculation is

lengthy, the starting interval for the bisection procedure to identify the maximum

apex height was simply chosen as [Y ∗s ;K], see Section 2.2. Here, all simulations

resulted in maximum apex heights well below Y0 = K.

2.1.6. Energy Efficiency

Two notions of energy efficiency are used in this thesis: (a) the work-based cost

of movement, CY0 , and (b) the ratio of elastic and total work, η. The first notion

describes hopping performance with respect to hopping height, whereas the second
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notion is a measure for the relation between elastic and non-elastic properties of the

hopper.

The calculation of the work done by spring and damper is straight-forward using

Equation 2.3. To determine the total mechanical work performed by the system due

to variable leg-spring parameters, the time derivative of system energy

E(τ) = Y +
1

2
Y ′2 +

1

2
(K +K ′τ)(1 + L′0τ − Y )2. (2.21)

is required. Using Equation 2.3 for simplification the time derivative yields

E ′ =
1

2
(1 + L′0τ − Y )2K ′ + (K +K ′τ)(1 + L′0τ − Y )L′0. (2.22)

Thus, positive and negative contributions to the work due to variable leg-spring

parameters are solely determined by the signs of the parameter rates, L′0 and K ′,

as during ground contact the conditions K > K ′τ and Y ≤ 1 + L′0τ have to be

satisfied.

Following Srinivasa and Ruina (2006); Rummel et al. (2010), but simplifying the

notation used therein, the work-based cost of movement is defined as

CY0 :=
1

Y0

τs∫
0

(
|Pspring|+ |Pdamp|+ |PL′

0
|+ |PK′|

)
dτ, (2.23)

where because of Equations 2.3 and 2.22 the individual contributions are given by

Pspring = (KTD +K ′τ)(1 + L′0τ − Y )Y ′, (2.24a)

Pdamp = −DY ′2 (2.24b)

PL′
0

= (KTD +K ′τ)(1 + L′0τ − Y )L′0, (2.24c)

PK′ =
1

2
(1 + L′0τ − Y )2K ′. (2.24d)
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Similarly, the work ratio of elastic and total work is defined as

η :=
Wspring

Wtotal

=

τs∫
0

|Pspring| dτ
τs∫
0

(
|Pspring|+ |PL′

0
|+ |PK′ |+ |Pdamp|

)
dτ

. (2.25)

2.2. Simulation Protocol

As the analytical result is too complex to be of actual use, numerical integration

of the VLS hopper is done numerically in Matlab (R2010a, The MathWorks Inc.,

Natick, MA, USA). Because of the tenfold smaller runtime, the built-in Simulink

toolbox is employed rather than integrating the equation of motion directly in Mat-

lab, see Figure 2.3. As the implemented Runge-Kutta variable-step integrator

(ode45) is used, Equation 2.3, which is of second order, is decomposed into two

equations of first order. A maximum time-step size of 10−2 and relative and ab-

solute tolerance ≤ 10−12 were chosen. Results were checked with a tenfold smaller

tolerance.

Finding a periodic solution is equivalent to finding the zero crossing of the function

g(Y0,i) = Y0,i − fnum(Y0,i), where fnum(Y0,i) is the numerically integrated result for

Y0,i+1. To identify periodic solutions, a Newton-Raphson algorithm is utilized.

A solution is said to be periodic, if |g(Y0,i)|, i.e. the difference between consecutive

apex heights, does not exceed 10−9.

To determine the effective boundaries of the basin of attraction, a bisection

method with the initial interval [1;Y ∗], and [Y ∗;K] respectively, is used. For the

motivation of the latter see Section 2.1.5. The bisections terminate for an interval

size below 10−9.

In order to avoid solutions with negative leg stiffness or rest length, termination

conditions for vanishing K and L0 are implemented. The simulation also terminates

at ground contact of the point mass.
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Simulations are done for leg stiffness KTD = 25 (k ≈ 19.6 kN m−1 for human

dimensions, m = 80 kg and l0 = 1 m). If not mentioned otherwise, solutions are

mapped with respect to stiffness rate K ′ and rest-length rate L′0. Increments of 0.3

for K ′ and 0.002 for L′0 are used.

2.3. Effects on Hopping

2.3.1. Periodic Solutions

When mapping periodic solutions with respect to rest-length rate L′0 and stiffness

rate K ′, two J-shaped areas of periodic solutions are found for the system without

additional damping, see Figures 2.4 and 2.5. Surprisingly, all unstable solutions

(|λ| > 1, region Ia in Figure 2.5) lie within the quadrant of negative rest-length rate

and positive stiffness rate, all stable ones (|λ| < 1, region Ib) in the quadrant of
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Figure 2.3.: Comparison of runtime for simulation directly in Matlab, τMatlab, and
in Matlab using the Simulink toolbox, τSimulink. The ratio of runtimes
is displayed over the number of steps of a representative stable SLIP
solution (running with Y0 = 1, Y ′0 ≈ 1.6, K ≈ 25.5 and α0 = 68◦).
Mean and standard deviation of five simulations for each number of
steps are shown.
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positive rest-length rate and negative stiffness rate. These areas are connected via

the neutrally stable solutions (|λ| = 1) for L′0 = 0 and K ′ = 0, although they appear

to be disconnected because of the resolution of L′0 and K ′. Without additional

damping rest-length rate and stiffness rate are required to be of opposite sign in

order to allow for periodic hopping. If both parameters are negative only energy

withdrawal takes place (region IVa), if both are positive only energy injection (region

IVb). Only the combination of extracting energy from the system by reducing one

parameter and compensating by increasing the other one ensures that after one step

initial energy (equivalent to apex height) can be reached again.

The areas of stable and unstable solutions are both confined between a falling-

down barrier and an energy barrier: In the case of the unstable solutions the touch-
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Figure 2.5.: Regions of the investigated parameter space: periodic solutions (I),
ground contact within one hopping cycle (II), energy withdrawal can-
not be fully compensated (III), unilateral change of energy (IV) and
vanishing leg stiffness during contact (V).

down condition, Y0 ≥ 1, is violated in region IIa, i.e. the leg is not initialized and the

mass point follows a free-fall trajectory until ground contact. For ever faster rest-

length declines energy loss due to negative L′0 exceeds energy injection via positive

K ′ (region IIIa).

In region IIb the spring cannot store sufficient initial energy. Thus, the point

mass cannot be supported properly and hits the ground. This is equivalent to the

leg being fully compressed, ∆Lmax = 1, see Figure 2.6(d). At the lower boundary

energy withdrawal via leg softening exceeds energy input by extension of the leg

(region IIIb). It should be noted that for fast stiffness declines leg stiffness vanishes

during contact (region V), i.e. KTO = 0, see Figure 2.6(f), before the system hits

the energy barrier. The simulations are terminated in this area to avoid solutions

with negative leg stiffness.
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Figure 2.6.: Region of stable hopping solutions (|λ| < 1, see Figure 2.4) with leg
stiffness KTD = 25. Solutions are mapped with respect to stiffness
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2.3.2. Landing-Takeoff Asymmetry

To illustrate the spatio-temporal behavior of stable and unstable hopping solutions,

representative examples are shown in Figure 2.7. Asymmetry of ground-reaction

force with respect to instant of half stance time can clearly seen. Nonetheless, only

the stable case corresponds to the experimental findings of Kuitunen et al. (2011)

for hopping and Cavagna (2006) for running: Maximum force is reached before the

half of stance time, a behavior the SLIP model was unable to reproduce so far. The

increase of leg length at takeoff with respect to leg length at touchdown for stable

hopping is in agreement with the experimental results as well, e.g. Kuitunen et al.

(2011) for hopping and Lipfert (2010) for running. In accordance to the asymmetries

observed in ground-reaction force and leg length, the force-length function of the

model for both stable and unstable parameter choices deviates from the behavior

of a linear spring, Figure 2.7(e,f). Resulting time evolution of total energy and its

components during ground contact for the chosen parameter sets is plotted in Figure

2.8. Representative behavior for either stable or unstable solutions can be seen:

Stable solutions first exhibit a maximum in total energy followed by a minimum

before returning to initial energy (total energy is constant during flight phases) and

vice versa for unstable solutions.

Landing-takeoff asymmetry, as observed in human hopping and running (Farley,

1991; Cavagna, 2006; Cavagna and Legramandi, 2009; Kuitunen et al., 2011; Lipfert,

2010), may occur due to numerous reasons. In Cavagna (2006) visco-elasticity of

muscles is suggested to be the main contribution. Another potential reason for this

kind of asymmetry could be the specific function of the human foot resulting in

increases in nominal leg length and decreases in leg stiffness from touchdown to

takeoff (Maykranz et al., 2009).

In this thesis, leg segmentation and specific muscle properties were not taken into

account. Still, a human-like leg behavior was predicted based on the requirement of
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Figure 2.7.: Examples for periodic hopping patterns. In (a,b) ground-reaction
forces and in (c,d) leg lengths L are shown for all of stance time us-
ing the parameter sets (L′0 = −0.018, K ′ = 23.4) for unstable and
(L′0 = 0.022, K ′ = −9.6 for stable hopping. (c,d) also show the linear
behavior of rest length L0 during contact (leg stiffness behaves equiva-
lently, but in opposite direction). (e,f) show the resulting force-length
functions of the leg spring.
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Figure 2.8.: Energy evolution during ground contact for the chosen hopping pat-
terns, see Figure 2.7. Potential energy Epot = Y , kinetic energy
Ekin = 1

2
Y ′2, spring energy Espr = 1

2
K(L0 − Y )2 and total energy

Etot = Epot + Ekin + Espr are shown over stance time.

stable hopping realized with variable leg-spring properties, Figure 2.7. A decreasing

leg stiffness supports stable hopping and shifts the instant of maximum force into

the first half of stance, thus reproducing the landing-takeoff asymmetry observed in

humans.

2.3.3. Leg Softening and Stretching Ensure Stable Hopping

A clear distinction between the two parameter setups can be made based on sta-

bility analysis. Without additional damping, all unstable solutions possess positive

stiffness rates and negative rest-length rates (region Ia in Figure 2.5). In contrast,

all stable hopping patterns feature negative stiffness rates and positive rest-length

rates (region Ib). Therefore, to ensure stable hopping without additional damping,

configurations with decreasing leg stiffness and increasing rest length are required.

The decrease of leg stiffness resembles the force-velocity function of muscles. As

Blickhan et al. (2003) noted that the negative slope of the force-velocity function
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supports stability, a direct connection between stiffness decrease and stability may be

drawn. The increase in rest length required to compensate the effects of decreasing

leg stiffness may be realized by the foot, with the ankle joint being more extended

at takeoff than at touchdown (Lipfert, 2010). This argument also is supported by

the findings of Malcolm (2010) showing that the ankle joint is the main contributor

of positive work in human walking and running.

It should be noted that a large number of stable solutions found with the numerical

model are not physiologically feasible, e.g. in terms of hopping height, amplitude

of ground-reaction force, etc. Nevertheless, considering reasonable constraints, e.g.

restricting apex height to Y0 ≤ 1.5, Figure 2.6(a), and rest-length change to LTO ≤

1.1, Figure 2.6(e), a corresponding range of L′0 and K ′ for stable hopping can be

found. It should be noted that for these hopping solutions the model predictions

are in good agreement with human data, e.g. Kuitunen et al. (2011), with hopping

frequencies of 1–2 Hz (for m = 80 kg and l0 = 1 m), Figure 2.6(b), and ground-

reaction forces with amplitudes around three times body weight, Figure 2.6(c).

2.3.4. Additional Damping Is Beneficial for Stable Hopping

Komsuoglu (2004) stated that in order to achieve stable hopping damping is essen-

tial. To compensate for energy losses caused by velocity-dependent damping and

plastic ground collision, piecewise-constant modulation of leg stiffness during stance

was considered. For simultaneous (linear) variation of rest length and leg stiffness,

the results presented here show that additional damping is not required, but bene-

ficial for stable hopping. The functional damping due to leg softening is predicted

to be sufficient.

Nonetheless, for increasing damping ever smaller eigenvalues are reached in the

stable region. At the same time, the eigenvalues are no longer monotonically dis-

tributed. This feature of additional velocity-dependent damping requires further

investigation. another advantage of additional damping is the increased range of leg



2.3. Effects on Hopping 33

parameter variations resulting in stable hopping, Figure 2.9. For increasing damp-

ing coefficients the falling-down barrier is shifted towards higher stiffness rates, see

Figure 2.9. Therefore, the stable area broadens considerably and stable solutions

also can be found for configurations with positive stiffness rates. Additionally, stable

solutions for negative rest-length rates appear. Hence, in combination with positive

L′0, additional damping does allow for a range of stiffness rates around K ′ = 0, which

could be interpreted as hypothetical stiffness perturbations. Thus, it is not required

to fine-tune leg stiffness while operating with this parameter setup. Similarly, ad-

ditional damping combined with positive K ′ allows for fluctuations of initial rest

length. However, such fluctuations of rest length are much more critical than fluc-

tuations of leg stiffness, which is in agreement with the modeling results of Merker

et al. (2011) for walking with asymmetric legs.

If additional damping is included the regions confining the area of stable solutions

at the lower boundary (regions IIIb and V in 2.5) do not merge smoothly anymore.

For certain choices of rest-length rates L′0 leg stiffness vanishes at the boundary

for two distinct stiffness rates K ′. Between these points leg stiffness remains non-

negative and stable hopping is possible. Thus, a bulge forms, growing more and

more prominent for increasing damping.

Both functional and velocity-dependent damping are simplified assumptions and

need to be carefully compared to human leg function. Even though the functional

damping investigated in this thesis describes the fundamental effects of variable

leg-spring parameters, the linear time dependency is still a very coarse approxima-

tion of reality. By introducing velocity-dependent damping, additional discrepancies

between experiment and model predictions occur. For instance, the model then pre-

dicts non-zero landing forces at the instant of touch-down which are not observed in

human hopping. Functional damping via variation of leg parameters does not cause

such effects, as the damping effect increases with leg compression. Another disad-

vantage of velocity-dependent damping is that takeoff takes place while leg length
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Figure 2.9.: Influence of damping coefficient D on the area of periodic solutions and
stability. Solutions are mapped with respect to stiffness rate K ′ and
rest-length rate L′0 for leg stiffness K = 25. Increments of 0.3 for K ′

and 0.002 for L′0 were used. Eigenvalue λ for periodic hopping is shown.
Stable solutions require |λ| < 1.
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Figure 2.9.: Influence of damping coefficient D on the area of periodic solutions and
stability. Solutions are mapped with respect to stiffness rate K ′ and
rest-length rate L′0 for leg stiffness K = 25. Increments of 0.3 for K ′

and 0.002 for L′0 were used. Eigenvalue λ for periodic hopping is shown.
Stable solutions require |λ| < 1.
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Figure 2.10.: Influence of damping coefficient D on the robustness of stable hopping
solutions. Robustness is mapped with respect to stiffness rate K ′ and
rest-length rate L′0 for leg stiffness K = 25. Increments of 0.3 for K ′

and 0.002 for L′0 were used.
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Figure 2.10.: Influence of damping coefficient D on the robustness of stable hopping
solutions. Robustness is mapped with respect to stiffness rate K ′ and
rest-length rate L′0 for leg stiffness K = 25. Increments of 0.3 for K ′

and 0.002 for L′0 were used.
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is still smaller than rest length, i.e. the leg is still compressed.

Here, the strength of the VLS concept becomes clear. Damping, as observed in

biological limbs, can be encoded in some non-constant spring stiffness, e.g. K(τ),

as described by the VLS concept. Linear-in-time stiffness changes only represent

a first-order approximation of this functional damping. Extensions like functional

damping as a function of velocity, K[Y ′(τ)], may be closer to reality (see Section 3).

2.3.5. Trading Stability for Robustness

As in running (Rummel et al., 2010), there is a trade-off between stability and

robustness. Stability is maximal for small hopping heights, while robustness is

maximal for medium hopping heights, see Figures 2.4, 2.6(a) and 2.10. This is

due to the symmetric definition of robustness as the maximum step-up or step-

down perturbation the hopper can compensate. Thus, robustness is the minimum

distance of the stable fixed point to either boundary of the basin of attraction.

For medium hopping heights the stable fixed point is located in the middle of the

basin of attraction rather than towards either end, maximizing the distance to both

boundaries and therefore robustness.

If reasonable constraints are considered, e.g. restricting apex height to Y0 ≤ 1.5

and rest-length change to LTO ≤ 1.1, see Figure 2.6(a,e), the hopping solutions

correspond rather to optimized stability than robustness. However, robustness may

still be considerable (up to one half of leg length at touchdown), see Figure 2.10.

Additional velocity-dependent damping shifts the upper falling-down barrier out-

wards. The hopper is able to achieve larger hopping heights. At the same time, the

stable fixed point Y ∗s is not noticeably shifted towards the middle of the basin of

attraction. The stable fixed point remains closer to one of the boundaries. Thus, ro-

bustness only is marginally increased. Nonetheless, one benefit of additional damp-

ing is that the areas for a given level of robustness increase considerably.
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2.3.6. Trading Stability for Efficiency

As the model used in this thesis is quite conceptional, it was not attempted to es-

timate a metabolic or specific cost of transport, e.g. Minetti and Alexander (1997);

Collins (2005). Rather the work-based cost of movement CY0 was applied to calculate

the mechanical requirements to achieve the periodic hopping height Y0 within the

variable-leg-spring concept and with additional velocity-dependent damping. Fol-

lowing an argument of Ruina et al. (2005), this simplified approach is valid as longas

it is used for comparisons within one model.

Additional velocity-dependent damping only marginally increases the work-based

cost of movement with respect to hopping height, while the regions for a given cost

level enlarge considerably, see Figure 2.11. This suggests a benefit of additional

damping with respect to hopping performance or efficiency.

However, the work ratio decreases drastically with additional damping (Fig. 2.12).

The work done passively by the spring, so to say “for free”, reduces, whereas the

contribution of the damper to support the point mass against gravity increases.

Hopping becomes more visco-elastic and less efficient. Thus, from an efficiency

point-of-view, the functional damping via leg softening is more beneficial for hopping

than the commonly used velocity-dependent damping.

2.4. Application for Robotics

The results of this thesis indicate that with an appropriate combination of L′0 and

K ′ during contact stable, robust and efficient hopping patterns can be achieved.

Within the predicted range of leg parameter variations there is no need for precise

parameter tuning. It also is important to note that the change in leg-spring parame-

ters does not require continuous sensory feedback except for the touchdown/takeoff

trigger to initiate the parameter variation over time. This indicates that for robotic

legs with adjustable leg stiffness successful locomotion could be achieved with little
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Figure 2.11.: Influence of damping coefficient D on work-based cost of movement
CY0 . Cost of transport is mapped with respect to stiffness rate K ′ and
rest-length rate L′0 for leg stiffness K = 25. Increments of 0.3 for K ′

and 0.002 for L′0 were used.
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Figure 2.11.: Influence of damping coefficient D on work-based cost of movement
CY0 . Cost of transport is mapped with respect to stiffness rate K ′ and
rest-length rate L′0 for leg stiffness K = 25. Increments of 0.3 for K ′

and 0.002 for L′0 were used.
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Figure 2.12.: Influence of damping coefficient D on the ratio of elastic and total
work η. Work ratio is mapped with respect to stiffness rate K ′ and
rest-length rate L′0 for leg stiffness K = 25. Increments of 0.3 for K ′

and 0.002 for L′0 were used.
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Figure 2.12.: Influence of damping coefficient D on the ratio of elastic and total
work η. Work ratio is mapped with respect to stiffness rate K ′ and
rest-length rate L′0 for leg stiffness K = 25. Increments of 0.3 for K ′

and 0.002 for L′0 were used.
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control effort. Key to this “relaxed control” is the spring-like leg behavior. The

underlying elasticity allows to exploit mechanically self-stabilizing effects. Thus, it

is not necessary to control the robot at all times. One might even envision some

kind of conditional control: The system is allowed to evolve freely for most of the

time and control is only enforced in case additional safety measures are required, e.g.

certain values for maximum ground-reaction force or leg compression are exceeded.

In the last years, a number of design proposals were presented to actively tune

the stiffness of compliant joints (Van Ham et al., 2007; Wolf and Hirzinger, 2008;

Jun and Clark, 2009; Galloway, 2009). With this technology it becomes possible

to adjust stiffness properties of the legs. This can be done in preparation of or

during ground contact. When combined with variation of rest length no additional

damping structures in the system may be required to achieve stable locomotion, as

suggested by this thesis. The level of damping can be functionally tuned within

the variable-leg-spring concept to the required level of stability depending on the

system’s or environmental conditions (e.g. inherent damping, compliant ground). In

principle, this control scheme would also be applicable if no physical damping was

present, even though this is unlikely in engineered systems.

However, additional velocity-dependent damping is beneficial. With additional

damping more than 60% disturbance rejection can be achieved (for a damping coef-

ficient of D = 0.9), Figure 2.9. Furthermore, the robustness with respect to variation

of leg parameters largely increases. This even includes the case of a fixed leg stiffness

which may simplify leg design. Robots with telescopic legs based on designs like e.g.

Sprawlita (Cham et al., 2000) or Scout II (Poulakakis et al., 2005) might benefit

from the stabilizing properties identified in this thesis. Furthermore, the variable

leg-spring concept can be transferred to the operation of a segmented leg (Rummel

and Seyfarth, 2008). In a robot with segmented legs, tunable joint stiffness may be

useful to ease control of bouncing gaits.
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3. The Variable-Leg-Spring Model

with Velocity-Dependent Stiffness

3.1. Modification of the VLS Model

3.1.1. Velocity-Dependent Stiffness

In the previous chapter, preplanned time-dependent leg-spring parameters during

hopping were investigated. Motivated by the force-velocity relationship of the mus-

cle and its stabilizing effect on hopping (Haeufle et al., 2010), leg-stiffness varia-

tion is now considered to be velocity-depedent, i.e. reactive. As asymmetry of the

ground-reaction force was found to correlate with stability, see Section 2.3.2, and

linear-in-time rest-length variations do not induce any GRF asymmetry, see Sec-

tion 2.1.2, the control scheme for rest-length changes is inherited from the original

VLS model. Therefore, the investigation is focussed on the stabilizing effects of

velocity-dependent leg stiffness. Additional damping is neglected in this chapter.

Two models are investigated. In the first model, leg stiffness is allowed to vary

only during ground contact and is held constant during flight phases (except of reset

to KTD at apex). The second model incorporates the concept of swing-leg control

of Blum et al. (2010), in order to analyze whether it is beneficial for stable hopping.

The simplest way to introduce this kind of control to the VLS model is to allow leg

stiffness to change continuously throughout the whole hopping cycle, rather than
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Figure 3.1.: Leg-spring parameters correlating with stable hopping, i.e. rest-length
increase and leg-stiffness decrease, are displayed throughout one hopping
cycle. Leg-stiffness variation with and without flight control is shown.
Rest-length variation coincides for both models.

keeping it constant during flight phases (and resetting at the instant of apex). The

model with flight control has the advantage that for parameter setups corresponding

with stable hopping, stiffness at touchdown increases with hopping height. Thus,

for these parameter choices, the spring is able to better support the point mass. The

parameter profiles for the modified models are displayed in Figure 3.1.

The equations for leg-stiffness variation (a) without and (b) with flight control

read

K(Y ′) = KTD +KY ′(Y ′ − Y ′TD), (3.1a)

K(Y ′) = KApex +KY ′ Y ′, (3.1b)

respectively. Y ′TD = −
√

2(Y0 − 1) is calculated at apex via the conservation of

energy during flight phase, with initial apex height Y0. Thus, touchdown stiffness

with and without flight control, KTD,FC and KTD are related via

KTD,FC = KTD +KY ′ Y ′TD = KTD −KY ′

√
2(Y0 − 1). (3.2)
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Rest-length variation during ground contact remains linear in stance time τ ,

L0(τ) = 1 + L′0 τ, (3.3)

while rest length is held constant during flight phase and reset at apex to L0 = 1.

3.1.2. Landing-Takeoff Asymmetry

In order to quantify landing-takeoff asymmetry,

εLTO :=
τmax − τst/2

τst/2
(3.4)

is introduced, with τmax = τ(Fmax) being the time of maximum ground-reaction

force and τst being stance time. By defintion, εLTO is confined to the interval [−1, 1].

εLTO = 0 is equivalent to the symmetric case, while a negative εLTO corresponds to

a GRF peak in the first half of ground contact and a positive one corresponds to a

GRF peak in the second half.

3.1.3. Energy Efficiency

Using the same notions of energy efficiency as in the previous chapter, work-based

cost of movement CY0 and ratio of elastic and total work η need to be adapted to

account for velocity-dependent rather than time dependent leg-stiffness variation.

The time derivative of system energy

E = Y +
1

2
Y ′2 +

1

2
K(Y ′)(L0(τ)− Y )2. (3.5)

now yields

E ′ =
1

2
(L0(τ)− Y )2 Y ′′KY ′ +K(Y ′)(L0(τ)− Y )L′0. (3.6)
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As Y ′′ ranges from −1 to Fmax−1, Equation 2.3, velocity-dependent leg stiffness will

act as damper as well as actuator during one hopping cycle, the main contribution

however depending on the sign of KY ′ .

The work-based cost of movement is now defined as

CY0 :=
1

Y0

τs∫
0

(
|Pspring|+ |Pdamp|+ |PL′

0
|+ |PKY ′ |

)
dτ, (3.7)

with

Pspring = K(Y ′)(L0(τ)− Y )Y ′, (3.8a)

Pdamp = −DY ′2, (3.8b)

PL′
0

= K(Y ′)(L0(τ)− Y )L′0, (3.8c)

PKY ′ =
1

2
(L0(τ)− Y )2 Y ′′KY ′ . (3.8d)

Similarly, the work ratio of elastic and total work is defined as

η :=
Wspring

Wtotal

=

τs∫
0

|Pspring| dτ
τs∫
0

(
|Pspring|+ |PL′

0
|+ |PKY ′ |+ |Pdamp|

)
dτ

. (3.9)

3.1.4. A Template Muscle-Model

As to further assess the descriptive power of the VLS concept, it is compared to the

fundamental muscle model of Haeufle et al. (2010). Containing only an (inverse)

contractile element and no elasticity, neither parallel nor serial, it represents the

most reduced muscle model capable of vertical hopping. In accordance with Full

and Koditschek (1999), it therefore may be seen as a template muscle-model for

hopping.

The pulling force of the contractile element is mechanically redirected, hence the
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designation “inverse contractile element”, see Figure 1 in Haeufle et al. (2010), and

a (pushing) Hill-type leg force (Hill, 1938) is generated,

fleg = A(t) fl(y) fv(ẏ) fiso. (3.10)

In this model, A(t) is the activation state of the muscle, fl(y) is the force-length

function (FLF), fv(ẏ) is the force-velocity function (FVF) and fiso is the maximum

contraction force of the muscle generated isometrically, i.e. without change in length.

Activation is constrained to A(t) ∈ [0, 1]∀t. Force-length and force-velocity function

only depend on the state variables of the point mass, fl(y) and fv(ẏ) respectively, as

during stance y corresponds to momentary leg length and ẏ to contraction velocity

of the muscle.

In Haeufle et al. (2010), the intrinsic muscle properties correlating to force-length

and force-velocity function are each described at three levels of approximation: con-

stant, linear and Hill-type,

fl =



1 constant,

k

m g
(l0 − y) linear,

exp

[
cl

∣∣∣∣y − loptw

∣∣∣∣3
]

Hill,

(3.11)

and

fv =



1 constant,

1− µ ẏ linear,
ẏmax + ẏ

ẏmax − cvẏ
, ẏ > 0

N − (N − 1)
ẏmax − ẏ

ẏmax + 7.56 cvẏ
ẏ ≤ 0

Hill.

(3.12)

Parameters of the linear force-length function are spring stiffness k and rest length
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l0, whereas w and cl describe width and curvature of the bell-shaped Hill-type

approximation and lopt denotes optimal muscle length for maximum force, see Geyer

et al. (2003).

In the linear approximation the slope of the force-velocity function is described by

µ. As µ is chosen to be positive, see Table 3.1, higher leg forces are created during

compression of the inverse contractile element, ẏ ≤ 0, than during decompression,

ẏ > 0. Due to mechanical redirecting of muscle force compression and decompression

correspond to eccentric and concentric contraction of the muscle, respectively. Thus,

force generation within this model is consistent with physiological data, e.g. Cavagna

and Legramandi (2009). The non-linear approximation of the force-velocity function

is based on Hill’s Equation, (Hill, 1938), for concentric contraction and a relation

found by Seyfarth et al. (2000) for eccentric contraction. Here, cv is the curvature

of the force-velocity function and ẏmax is the maximum contraction velocity, while

N represents the eccentric force enhancement with N = fleg/fiso for ẏ = −ẏmax.

Introducing parameters normalized with respect to g, m and l0 ≡ lTD, force-length

Parameter Value

Maximum isometric muscle force Fiso = fiso/(mg) 3
Stiffness K = klTD/(mg) 10
Curvature (FLF) cl −29.96
Width (FLF) W = w/lTD 0.45
Optimal muscle length Lopt = lopt/lTD 0.9
Slope (FVF) M =

√
g lTD µ 0.78

Maximum contraction velocity Y ′max = ẏmax/
√
g lTD −1.1

Curvature (FVF) cv 1.5
Eccentric force enhancement N 1.5

Table 3.1.: Normalized model parameters. Derived from Haeufle et al. (2010).
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and force-velocity function now read

Fl(Y ) =



1 constant,

K(1− Y ) linear,

exp

[
cl

∣∣∣∣Y − Lopt

W

∣∣∣∣3
]

Hill,

(3.13)

and

Fv(Y
′) =



1 constant,

1−M Y ′ linear,
Y ′max + Y ′

Y ′max − cvY ′
, Y ′ > 0

N − (N − 1)
Y ′max − Y ′

Y ′max + 7.56 cvY ′
Y ′ ≤ 0

Hill,

(3.14)

with the familiar normalization Y = y/lTD, τ =
√
g/lTD(t − tTD) and ′ being the

derivative with respect to τ , see Chapter 2.1.1. Normalized leg force then is

Fleg = A(τ)Fl(Y )Fv(Y
′)Fiso. (3.15)

Normalized model parameters are displayed in Table 3.1. For a physiological moti-

vation of the chosen parameter values see Haeufle et al. (2010) and the references

mentioned therein. It should be noted, that the notation of Haeufle et al. (2010)

was modified slightly, in order to be consistent with this thesis.
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Figure 3.2.: Region of periodic hopping solutions without flight control for leg stiff-
ness KTD = 25. Solutions are mapped with respect to stiffness rate KY ′

and rest-length rate L′0. Increments of 0.1 for KY ′ and 0.002 for L′0 were
used. Eigenvalue λ for periodic hopping is displayed. Stable solutions
require |λ| < 1.

3.2. Effects on Hopping

3.2.1. Basic Stability Properties are Inherited

Clearly separated regions of stable and unstable hopping solutions are inherited

from the original VLS model, cf. Figures 2.4 and 3.2 as well as Figures 2.5 and 3.3.

Similarly to the model with time-dependent leg stiffness, a net stiffness decrease is

needed for stable hopping.

The distribution of unstable periodic hopping still is constrained between a falling-

down barrier and an energy barrier, see Figure 3.3. In region II the touchdown

condition, Y0 ≥ 1, is violated. Thus, the leg is not initialized and the mass point

follows a free-fall trajectory until ground contact. Furthermore, for ever faster rest-
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Figure 3.3.: Regions of the investigated parameter space: periodic solutions (I),
ground contact within one hopping cycle (II), energy withdrawal/input
cannot be fully compensated (III) and unilateral change of energy (IV).

length declines energy loss due to negative L′0 exceeds energy injection via positive

KY ′ (region IIIa).

The shape of the domain of stable hopping is no longer J-shaped. Along with

a falling-down barrier equivalent to that of the unstable solutions (region II), the

area of stable solutions is now confined between regions in which actuation via leg

stretching either under- or overcompensates for functional damping via leg softening,

regions IIIa and IIIb respectively. Additionally, vanishing leg stiffness no longer

occurs.

In any case, rest-length and leg-stiffness variation are still required to be of op-

posite sign. Otherwise, periodic hopping is not possible at all (regions IVa+b), as

only energy input or withdrawal would take place.

However, by introducing a velocity-dependent leg stiffness, stability is increased

considerably. Stable hopping requires eigenvalues |λ| < 1; the smaller |λ| the more
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Figure 3.4.: Region of stable hopping solutions without flight control for velocity-
dependent leg stiffness, KTD = 25. Apex height (a) and maximum
ground-reaction force (b) are mapped with respect to stiffness rate KY ′

and rest-length rate L′0. Increments of 0.1 for KY ′ and 0.002 for L′0 were
used.

stable the system. Instead of eigenvalues λ & 0.7 for a time-dependent leg stiffness

(without damping) now eigenvalues λ ≈ 0 can be realized and therefore, perturba-

tions can be compensated much faster.

Hopping heights are restricted to a physiologically more reasonable range, e.g.

hopping height Y0,max ≈ 3 for K(Y ′) in comparison to Y0,max > 10 for K(τ), see

Figures 2.6(a) and 3.4(a). Ground-reaction forces are only marginally smaller, see

Figures 2.6(c) and 3.4(b). Similarly, the values of leg stiffness and rest length at

takeoff remain of comparable size, cf. Figures 2.6(e,f) and 3.5.

As a result of this thesis, the VLS model has been validated conceptually also for



3.2. Effects on Hopping 55

0 0.2 0.4 0.6

0

rest-length rate L'0

st
if

fn
es

s 
ra

te
 K

Y
'

rest-length at takeoff LTO

.11 .21 1
3. 1.4 1.5 1.6 1.7 1.8

-10

(a)

0 0.2 0.4 0.6

0

-10

rest-length rate L'0

st
if

fn
es

s 
ra

te
 K

Y
'

stiffness at takeoff KTO

510

51

20

(b)

Figure 3.5.: Region of stable hopping solutions without flight control for velocity-
dependent leg stiffness, KTD = 25. Rest length at takeoff (a) and stiff-
ness at takeoff (b) are mapped with respect to stiffness rate KY ′ and
rest-length rate L′0. Increments of 0.1 for KY ′ and 0.002 for L′0 were
used.

non-linear variations of leg stiffness. For a discussion of the muscle-like properties

of velocity-dependent leg-stiffness variation see Chapters 3.2.3 and 3.2.4.

3.2.2. Flight Control is Beneficial for Stable Hopping

For the modified VLS hopper with flight control the region of stable hopping con-

siderably increases, cf. Figures 3.2 and 3.6. This is due to a constant stiffness offset

during stance as a result of flight control, see Equation 3.2 as well as Figures 3.1

and 3.7: As stiffness K(Y ′) influences the magnitude of energy changes within the

system, see Equations 3.7 and 3.8, it also affects the equilibrium of energy input
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Figure 3.6.: Region of periodic hopping solutions with flight control for leg stiffness
KApex = 25. Eigenvalue λ for periodic hopping is shown. Stable solu-
tions require |λ| < 1. Results are mapped with respect to stiffness rate
KY ′ and rest-length rate L′0. Increments of 0.1 for KY ′ and 0.002 for L′0
were used.

and withdrawal neccessary to allow for periodic hopping. Hopping heights Y0 and

maximum ground-reaction forces Fmax do not change considerably, cf. Figures 3.4

and 3.8.

As eigenvalues of the modified VLS hopper without flight control already reach

λ ≈ 0, i.e. perfect stability with perturbations being dissipated within one hopping

cycle, the potential effect of flight control on hopping stability is less obvious than

could be expected by the results of Blum et al. (2010). However, the accessable

control space is spread substantially, as well the areas of a given level of stability.

Hence, in order to maintain a certain level of stability at a certain hopping height,

a wider range of control parameters is applicable, i.e. less precise, “relaxed” control
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Figure 3.7.: Region of periodic hopping solutions with flight control for velocity-
dependent leg stiffness, KApex = 25. Stiffness at touchdown KTD is
shown. Results are mapped with respect to stiffness rate KY ′ and rest-
length rate L′0. Increments of 0.1 for KY ′ and 0.002 for L′0 were used.

suffices, see Figures 3.6 and 3.8(a).

3.2.3. Muscle-like Properties are Beneficial for Stable Hopping

Increasing landing-takeoff asymmetry is associated with increasing stability, see Fig-

ure 3.9. The more the model deviates from a perfect spring, with the peak in ground-

reaction force closer to touchdown, the more stable the movement is. Deviation from

elastic behavior also decreases work ratio η, Figure 3.10(b), with roughly only one

third of all work in the system done elastically for solutions with eigenvalues λ ≈ 0.

Unlike in the VLS model with time-dependent leg stiffness, the tradeoff between

robustness and cost of movement is less pronounced, see Figure 3.11. Hopping

solutions with maximum robustness may be achieved at low to medium cost of
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Figure 3.8.: Region of stable hopping solutions with flight control for velocity-
dependent leg stiffness, KApex = 25. Apex height (a) and maximum
ground-reaction force (b) are shown. Results are mapped with respect
to stiffness rate KY ′ and rest-length rate L′0. Increments of 0.1 for KY ′
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Figure 3.9.: Region of stable hopping solutions with flight control for velocity-
dependent leg stiffness, KApex = 25. Stability (eigenvalue λ) (a) landing-
takeoff asymmetry εLTO (b) are mapped with respect to stiffness rate
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dependent leg stiffness, KApex = 25. Cost of Movement CY0 (a) and
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movement. Furthermore, in the modified VLS model there are areas with optimal

stability and robustness.

As aforementioned, the VLS model has been validated conceptually for non-linear

stiffness variation. Muscle-like properties have proven to be beneficial for stable and

robust hopping movements. Stability arises due to preflexes, i.e. zero-time-delay con-

trol based on mechanical properties of the system (Brown and Loeb, 1997; Haeufle

et al., 2010). Here, mimicking the negative slope of the force-velocity function via

velocity-dependent stiffness declines during stance, “functional” damping, is key.

Energy dissipated by functional damping is compensated for via time-dependent

rest-length increases.

Such combinations of preflexes and feedforward motor patterns reflect recent ap-

proaches in robotics, e.g. Cham et al. (2000). With usage of actuators with built-in
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muscle-like properties mimicking the force-velocity relationship of Hill-type muscle

models, e.g. Haeufle et al. (2010), control effort could be highly facilitated: Muscle-

like properties improve hopping stability and robustness at cost of energy efficiency.

Neural control enables the muscle to behave more spring-like. The level of stability

and energy efficiency can be tuned on demand, with completely elastic beavior as

one extreme (perfect efficiency, no hopping stability).

3.2.4. Comparison with a Template Muscle-Model

In order to compare the VLS hopper with the muscle model of Haeufle et al. (2010),

the following hybrid approach was employed: At first, center-of-mass trajectory Y ,

center-of-mass velocity Y ′ and ground-reaction force Fleg for all parameter combi-

nations (L′0, KY ′) resulting in periodic hopping for the modified VLS model with

flight control were normalized to stance time. Secondly, force-length function Fl(Y )

A(const., const.) A(const., lin.) A(const., Hill)
Y0 = 1.072 Y0 = 1.089 Y0 = 1.051

Fmax = 3.000 Fmax = 3.214 Fmax = 2.720
λ = 0.172 λ = 0.141 λ = 0.233
L′0 = 0.064 L′0 = 0.078 L′0 = 0.046
KY ′ = −28.1 KY ′ = −29.6 KY ′ = −25.0

A(lin., const.) A(lin., lin.) A(lin., Hill)
− − −

A(Hill, const.) A(Hill, lin.) A(Hill, Hill)
Y0 = 1.072 Y0 = 1.089 Y0 = 1.051

Fmax = 2.997 Fmax = 3.214 Fmax = 2.718
λ = 0.170 λ = 0.141 λ = 0.230
L′0 = 0.064 L′0 = 0.078 L′0 = 0.046
KY ′ = −28.2 KY ′ = −29.6 KY ′ = −25.1

Table 3.2.: Maximum hopping height for stable VLS hopping corresponding to a
feasible solution for the muscle model, i.e. muscle activation satisfying
0 ≤ A(FY , FY ′) ≤ 1. Furthermore, maximum ground-reaction force
Fmax, eigenvalue λ and the control parameters, L′0 and KY ′ , correspond-
ing to that solution are shown.
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and force-velocity function Fv(Y
′) were calculated each at all three levels of ap-

proximation (constant, linear and Hill-like). Thus, there are nine combinations

of force-length and force-velocity function. Finally, Equation 3.15 was solved for

activation state A(τ) and parameter combinations violating 0 ≤ A(τ) ≤ 1, ∀τ were

omitted. The region of periodic hopping that is consistent with the modified VLS

hopper as well as the template muscle-model, is displayed in Figure 3.12 for all

combinations of Fl(Y ) and Fv(Y
′).

As can be seen in Figure 3.12, there are no stable solutions (color-coded blue) for

a linear force-length function. This is due to the fact, that for stable VLS hopping

the leg needs to be stretched. Thus, momentary leg length neccessarily exceeds

touchdown leg-length during decompression, Y > 1. Therefore, Fl would become

negative, see Equation 3.13 (linear), resulting in a negative muscle activation A(τ)

and violating the activation constraint.

Due to the paramter choices for the muscle model, maximum leg force is roughly

constrained to maximum isometric force of the muscle, Fleg,max ≈ Fiso = 3, see Table

3.2. Thus, only a fraction of the periodic hopping solutions for the modified VLS

model are also accessible for the muscle model. The only exceptions are some com-

binations with linear force-length function. As there is substantial leg compression

for the modified VLS model and as the muscle model is assumed to generate the

same center-of-mass movement, force amplification via the force-length function al-

lows for maximum ground-reaction forces up to Fmax ≈ 9 for linear Fl and constant

Fv or Fmax ≈ 5.5 for both linear Fl and Fv. For linear force-length function and

Hill-type force-velocity function however, there is no overlap of periodic hopping

for the modified VLS hopper and the muscle model.

In the case of linear force-length function and constant force-velocity function, the

maximum periodic hopping height also considerably exceeds the results of Haeufle

et al. (2010), Y0,max ≈ 2.3 as opposed to Y0,max ≈ 1.1. In all other cases, maximum

hopping heights are slightly smaller, see Table 3.2. In accordance with the results
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of Haeufle et al. (2010), the overlap region of both models decreases for an increase

in complexity of the force-velocity function, see 3.12. However, with respect to

hopping height the constant Fv is outperformed by the linear one. The differences

for an increasingly more complex force-length function are marginal, see Table 3.2.

Maximum hopping heights are the same for constant and Hill-type force-length

function, while the Hill-type Fl is slightly more stable. Furthermore, activation

patterns hardly differ in these cases, see Figure 3.12.

The landing-takeoff asymmetry of the calculated activation patterns is related

to the asymmetry of the ground-reaction forces of the VLS model. All activation

patterns resulting in unstable hopping share the feature of maximum activation

during decompression. This is in contradiction to physiological data, e.g. Cavagna

and Legramandi (2009), showing higher activation during compression, as more

support of the body weight is needed during that phase in order to avoid falling down.

Accordingly, for constant Fv, stable hopping requires maximum activation during

compression. For increasing complexity of the force-velocity function, activation is

more or less symmetric. As activation patterns for Hill-type force-length function

resemble those for Fl = 1, it may be argued that, in the muscle model, the force-

velocity function mimics viscous, muscle-like properties of the leg, while activation

corresponds to elastic, spring-like properties.

The results show the close relationship between the modified VLS hopper and the

template muscle-model of Haeufle et al. (2010) for hopping. In fact, if the muscle

model with linear force-length and force-velocity function would be extended to

incorporate linear-in-time variations of rest length, the models would be equivalent.

Both models emphasize the supporting effects of muscle-like properties for stable

hopping as reported in other studies, e.g. Van der Krogt et al. (2009).



3.2. Effects on Hopping 65

200

-10

stiffness rate KY'

rest-length rate L
'0

Act(t)Act(t)-0.6
-0.2

0

Act(t)Act(t)

-0.4
rest-length rate L

'0

-0.6
-0.2

0
-0.4

rest-length rate L
'0

-0.6
-0.2

0
-0.4

3010

-20

-30200

-10

stiffness rate KY' 3010

-20

-30

200

-10

stiffness rate KY' 30

10

-20

-30

Act(t)

Act(t)

Act(t)

Act(t)

Act(t)

Act(t)

Act(t)Act(t)

Act(t)Act(t)

F (lin.)Y F (const.)Y F (Hill)Y 

F
(con

st.)
Y

' 
F

(H
ill)

Y
' 

F
(lin

.)
Y

' 

Figure 3.12.: Region of periodic hopping corresponding to a feasible solution for the
muscle model, i.e. muscle activation satisfying 0 ≤ A(FY , FY ′) ≤ 1.
Red corresponds to unstable and blue to stable hopping. Addition-
ally, representative activation pattern normalized to stance time are
displayed.
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4. Variable Leg-Spring Properties in

Human Hopping

The following chapter is based on Riese et al. (2012). The analyses and results in

this chapter are the contribution of the author of this thesis. Discussions with A.

Seyfarth and S. Grimmer were appreciated. The experiments were conducted by S.

Grimmer.

4.1. Extraction of Leg-Spring Properties from the

Data

4.1.1. Experimental Setup

Six healthy male subjects (76.5 ± 8.4 kg) participated in the study. Prior to the

measurements, the experiment was approved by the ethics review board of the Uni-

versity of Jena, as laid out in the Declaration of Helsinki, and all subjects gave their

written informed consent.

The subjects were asked to perform vertical jumps on both legs. Initially, each

subject was instructed to jump with self-selected frequency (and height). Then,

following Farley (1991), the hopping frequencies 1.2 Hz, 1.8 Hz, 2.8 Hz and 3.6

Hz were prescribed with a metronome. The sequence of hopping frequencies was

randomized for each subject.
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Each trial was of 30 seconds length. At the beginning and end of each trial, the

subjects were asked to stand quiet for five seconds, leaving 20 seconds of vertical

hopping, resulting in approximately 20 − 50 hopping cycles depending on subject

and frequency.

4.1.2. Kinematics and Kinetics

In order to obtain kinematics, 17 reflective markers were placed on each subject.

Spatial positions of the markers were measured with 1 kHz using a ten-camera

infrared system (Proflex MCU240, Qualisys, Gothenburg, Sweden). From this data,

the center-of-mass (CoM) position was calculated in accordance to Dempster’s body

segment parameter data (Dempster, 1955; Winter, 2009).

Ground-reaction forces (GRF) were measured directly with 1 kHz using a Kistler

force platform. Furthermore, using a custom MATLAB routine, the center-of-

pressure (CoP) position was extracted from GRF data.

4.1.3. Estimation of stiffness and rest length

In order to estimate global leg properties, the SLIP model was used: All mass was

assumed to be located in the center of mass and the leg was approximated as a

massless spring, connecting center of mass and center of pressure, see Figure 4.1. As

this thesis is focused on vertical hopping, ground-reaction forces and center-of-mass

movement were projected into leg direction. Therefore, in the coordinate system

aligned with the leg the three-dimensional data set is reduced to one-dimensional

(“vertical”) hopping.

Additionally, ground-reaction forces were normalized to body weight and momen-

tary leg length to initial center-of-mass height linit. Thus, estimated stiffness and

rest length are non-dimensional. As the GRF and leg-length data is noisy, both data

sets were smoothed using a lowpass Butterworth filter of 5th order, with a cut-off
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flight

contact

flight

CoP

CoM

F
F||

F^

Figure 4.1.: Underlying SLIP model during human hopping. All mass is located
in the center of mass (CoM) and the leg length is assumed to be the
distance between center of mass and center of pressure (CoP). The mis-
alignment of the ground-reaction force (GRF) and the leg was exagger-
ated to illustrate the GRF contributions parallel and perpendicular to
the leg direction, F‖ and F⊥ respectively.

frequency of 25 Hz.

For each trial, stance phases (F‖ ≥ 0.01 BW ≈ 5 − 10 N) were extracted and

normalized to 100% stance time. Ground-reaction forces F‖ and leg length L were

interpolated accordingly. Following Rozendaal and van Soest (2008); Peter et al.

(2009) and assuming a linear spring at each time step i = 1, 3, ..., 99, the equation

F‖(i)
F‖(i+ 1)

 = K(i)·

L0(i)− L(i)

L0(i)− L(i+ 1)

 (4.1)

had to be solved. As there are two unknowns per time step i, K(i) and L0(i), it

was assumed that K(i) ≡ K(i + 1) and L0(i) ≡ L0(i + 1). Even though in this

approach the spring is linear for two consecutive time steps, resulting parameter

profiles may be non-constant, leading to a non-linear spring throughout stance. To
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ensure physically meaningful solutions, stiffness is constrained to values K > 0.

Accordingly, during stance rest length has to satisfy L0 > L, as L0 = L denotes the

transition from flight to stance phases and vice versa.

As a first approach, stiffness and rest length were calculated directly by solving

Equation 4.1 analytically for K(i) and L0(i). However, the constraints for stiffness

and rest length were violated for a considerable amount of time steps, especially

for frequencies below the preferred frequency fp. Thus, Equation 4.1 was solved

numerically with the least-squares method lsqcurvefit implemented in MATLAB

(R2010a, The MathWorks Inc., Natick, MA, USA) using the constraints for K and

L0 as lower boundaries.

4.2. Results

Except at 1.2 Hz, results presented here for a given frequency are means over all

trials of all six subjects at that frequency. At 1.2 Hz, behavior of half the subjects

distinctively differs from that of the other half, thus denoted in the figures as “1.2

Hz I” and “1.2 Hz II”, respectively. Furthermore, at each frequency there is some

variability between trials of each subject. However, these data sets show a similar

qualitative behavior and no relevant information is lost by averaging.

4.2.1. Measured data

Center-of-mass movement during stance, i.e. momentary leg length L(i), for frequen-

cies from fp to 3.6 Hz corresponds to running-like spring-mass dynamics, whereas

at 1.2 and 1.8 Hz also walking-like center-of-mass trajectories were measured, see

Figure 4.2(a). While at 1.2 Hz there are two distinct subsets of behavior, “1.2 Hz I”

and “1.2 Hz II”, at 1.8 Hz the quantities estimated from the data exhibit a similar

qualitative behavior for all subjects. Thus, at 1.8 Hz means over all subjects are

displayed. center-of-mass height at touchdown decreased with frequency (except
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Figure 4.2.: Human hopping data. Center-of-mass movement projected into leg di-
rection, (a), and the projected ground-reaction forces, (b), are shown
over stance time. Human hopping was investigated for five different
hopping frequencies (ranging from 1.2 to 3.6 Hz). Results are means
over all trials of all subjects at a given frequency (at 1.2 Hz there are
two distinct subsets consisting of half the subjects each).
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Figure 4.3.: Human hopping data. The global force-length function (FLF) resulting
from center-of-mass movement and ground-reaction force is displayed.
Human hopping was investigated for five different hopping frequencies
(ranging from 1.2 to 3.6 Hz). Results are means over all trials of all
subjects at a given frequency (at 1.2 Hz there are two distinct subsets
consisting of half the subjects each).

at “1.2 Hz I”), so did center-of-mass displacement and center-of-mass position at

take-off.

Accordingly, GRF profiles F‖(i) for hopping ranging from fp up to 3.6 Hz fea-

ture only a single peak, as expected from spring-mass hopping, see Figure 4.2(b).

Impacts were not observed; this is true for all trials and not an averaging effect.

For 1.2 Hz walking-like double-peak patterns were observed (even though half the

subjects exhibit running-like center-of-mass trajectories). As this frequency is quite

low, subjects avoided premature takeoff by decreasing leg force around midstance,

resulting in a second compression-decompression phase. For 1.8 Hz two of the sub-

jects mostly exhibit double-peak hopping, while the rest mostly features single-peak

GRF patterns. Thus, hopping at this frequency is of transitory behavior. In the

mean, however, single-peak hopping takes place.
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Resulting from ground-reaction forces and center-of-mass movement, the global

force-length function (FLF) is fairly linear down to 1.8 Hz, see Figure 4.3. However,

at 1.2 Hz it is highly non-linear.

4.2.2. Estimation results

For hopping within fp–3.6 Hz the stiffness profiles K(t) are roughly bell-shaped, with

increasing maximum stiffness for increasing frequency, see Figure 4.4(a). At 2.8 and

3.6 Hz also an additional impact-like maximum is present in the stiffness pattern.

However, in the force profiles no impacts were observed. This deviation from the

bell shape may be a result of muscle activation in anticipation of touchdown for

these rapid hopping movements (Seyfarth et al., 2000). At 1.2 and 1.8 Hz there are

considerable stiffness fluctuations over stance time. Most prominently, for “1.2 Hz

I” there is a clear maximum during the second GRF peak, indicating an active push-

off. This assumption also is supported by the energy profiles displayed in Figures

4.6 and 4.7. At 1.2 and 1.8 Hz considerably more energy is stored in the spring

than at higher frequencies, resulting in substantial fluctuations of total energy, with

maximum spring energy coinciding with maximum stiffness for “1.2 Hz I”.

Rest-length profiles L0(i) at fp to 3.6 Hz resemble the center-of-mass movement,

cf. Figures 4.4(b) and 4.2(a), while leg displacement ∆L(i) = L0(i)−Y (i) resembles

the ground-reaction forces, cf. Figures 4.5 and 4.2(b). At 1.2 Hz, rest length L0(i)

and displacement ∆L(i) for half of the subjects feature a plateau with an indent

around midstance, “1.2 Hz II”, while the other half exhibits a triple-peak pattern,

“1.2 Hz I”. At 1.8 Hz, again transitory behavior is observed.

In Figure 4.8 the corrected force-length functions are shown for all measured

frequencies, using the leg compression ∆L(i) instead of the actual leg length L(i).

Due to the estimated rest-length profile L0(i), non-linearity of the corrected force-

length function at 1.2 Hz considerably increased with respect to the uncorrected

case. At 1.8 Hz the corrected force-length function now is non-linear, also due to



4.2. Results 73

the estimated L0(i) pattern. For all other measured hopping frequencies a linear

approximation of the force-length function is still applicable.
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Figure 4.4.: Estimated leg parameters, stiffness K and rest length L0, over stance
time. Results are means over all trials of all subjects at a given frequency
(at 1.2 Hz there are two distinct subsets consisting of half the subjects
each).
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Results are means over all trials of all subjects at a given frequency
(at 1.2 Hz there are two distinct subsets consisting of half the subjects
each).

4.3. Variable Leg-Spring Properties

It was found that for vertical human hopping stiffness and rest length change dur-

ing stance, see Figure 4.4. These findings contradict the well-established assumption

that due to its linear force-length function hopping features constant spring param-

eters. On the contrary, the results are in better agreement the VLS concept. In

order to achieve orbital stability, stiffness decreases were key. As a first-order ap-

proximation for parameter variability, stiffness and rest length were assumed to

change linearly with stance time. The stiffness and rest-length profiles estimated

from experimental data are much more complex than this simple approximation.

Even though there is no general trend between touchdown and takeoff, simultane-

ous variation of stiffness and rest length in the model could now be validated based

on experimental data.

It is still an open question how global leg properties relate to properties on joint



4.3. Variable Leg-Spring Properties 75

C
o
M

 e
n
er

g
y
 E

[B
W

 l
]

C
oM

 
in

it

0.8

1.0

1.2

1.4

20 40 80 1000 60
stance time [%]

1.2 Hz I
1.2 Hz II
1.8 Hz

fp

2.8 Hz
3.6 Hz

(a)

sp
ri

n
g

 e
n

er
g

y
 E

 [
B

W
 l

]
sp

r
in

it

1.6

0.4

1.2

100
stance time [%]

0.8

0
0 20 40 8060

(b)

Figure 4.6.: Energy contributions over stance time. (a) CoM energy ECoM = Ekin +
Epot and (b) spring energy Espr = 1

2
K (∆L)2 are shown. Energies are

normalized to E0 = mglinit. Results calculated from means over all trials
of all subjects at a given frequency (at 1.2 Hz there are two distinct
subsets consisting of half the subjects each).

level. Amazingly though, the bell-shaped stiffness profiles, found here for the better

part of the investigated hopping frequencies, Figure 4.4(a), correspond directly to

the results of Rapoport (2003) on joint level. Using a segmented sagittal-plane



76 4. Variable Leg-Spring Properties in Human Hopping
to

ta
l 

en
er

gy
 E

 [
B

W
 l

]
to

t
in

it

1.0

2.6

1.4

2.2

20 40 80 1000 60
stance time [%]

1.2 Hz I
1.2 Hz II
1.8 Hz

fp

2.8 Hz
3.6 Hz

1.8

(a)

Figure 4.7.: Total energy Etot = ECoM+Espr over stance time. Energiy is normalized
to E0 = mglinit. Results calculated from means over all trials of all
subjects at a given frequency (at 1.2 Hz there are two distinct subsets
consisting of half the subjects each).

hopping model Rapoport (2003) found that joint stiffness increases with angular

deflection, resulting in bell-shaped stiffness profiles over stance time.

4.4. Non-linear Parameters vs. Linear Dynamics

There is overwhelming evidence that human legs behave like linear springs during

bouncy gaits, e.g. Farley (1991); Kim and Park (2011). Even in the presence of severe

perturbations, such as compliant surfaces (Moritz and Farley, 2005) or an elastic

exoskeleton (Ferris, 2006; Grabowski and Herr, 2009), humans maintain spring-

like center-of-mass dynamics. As spring-mass systems have been proven to possess

self-stabilizing properties, e.g. Seyfarth et al. (2002), it has been suggested, that

emulating linear spring-mass dynamics may ease control and thus “may be a primary

neuromuscular control strategy during bouncing gait” (Grabowski and Herr, 2009).
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Figure 4.8.: Corrected global force-length function, using leg compression ∆L in-
stead of leg length L. Results are means over all trials of all subjects at
a given frequency (at 1.2 Hz there are two distinct subsets consisting of
half the subjects each).

However, in Ferris (2006) and Bobbert and Casius (2011) it was stressed that spring-

like behavior should not be confused with actual mechanical springs.

The results presented here support this argument. Even though the global force-

length function, i.e. the relationship between ground-reaction force and momentary

leg length, is (in good approximation) linear for hopping frequencies down to 1.8

Hz, Figure 4.3, neither stiffness nor rest length are constant. However, the actual

variation of rest length and stiffness is masked by the interaction of both parameter

profiles. Rest length and stiffness vary in such a way that in the resulting ground-

reaction forces and center-of-mass trajectories the non-linearities compensate each

other. This also holds if the corrected force-length function is used, the only major

difference being that linear force-length functions now are only found for frequencies

ranging from fp to 3.6 Hz, see Figure 4.8.

The non-linearity of the stiffness profile also is in qualitative agreement with
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findings of Karssen and Wisse (2011). There, the effect of non-linear leg springs on

disturbance rejection during running was investigated using optimization techniques.

It was shown that the optimal stiffness profile is highly non-linear, with considerably

better disturbance rejection than the optimal linear stiffness (up to a factor of seven).

However, the predicted force-length function resulting from the optimal stiffness

profile for running becomes non-linear beyond a certain leg compression.

4.5. Frequency-dependent Control

At hopping frequencies of fp and above, stiffness and rest length exhibit a sim-

ilar qualitative behavior. Stiffness and rest-length profiles are smooth, even for

rapid movements (up to 3.6 Hz). This uniform parameter variation across different

hopping frequencies may be due to preflexes, i.e. zero-time-delay control based on

mechanical properties of the system (Brown and Loeb, 1997; Haeufle et al., 2010).

The fact that variability between trials decreases for higher frequencies further sup-

ports this reasoning. The parameter profiles themselves are bell-shaped, what might

reflect the bell-shaped stiffness profiles found on joint level in Rapoport (2003). The

impact-like peaks at 2.8 and 3.6 Hz may be due to pre-activation of the muscles

prior to touchdown (Seyfarth et al., 2000).

At 1.2 Hz however, stiffness and rest-length profiles are quite rugged, Figure 4.4,

implying active neural control. Two distinct control schemes can be observerd at this

frequency. While for “1.2 Hz II” control is mainly reflected by rest-length variation,

for “1.2 Hz I” stiffness and rest length oscillate phase-shiftedly, with a dramatic

stiffness increase in preparation of takeoff. In accordance with Farley (1991), this

suggests an active push-off to compensate for energy dissipated in the first half of

contact. Similar actuation schemes with stiffness increases during the second half

of contact were proposed in e.g. Koditschek and Buehler (1991); Kalveram et al.

(2010).
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Hopping with 1.8 Hz shows a transitory behavior between slow and fast hopping.

Recent findings of Kim and Park (2011) support the statement that humans employ

different control strategies to stabilize bouncy gaits, and that the chosen strategy

depends on the rate of movement. Surprisingly, the results presented here resemble a

gait transition from walking to running, Figure 4.2, even though there is no locomo-

tion. For the “1.2 Hz II” data set even hybrid gaits with running-like center-of-mass

trajectories and walking-like ground-reaction forces were observed.

In accordance with Bobbert and Casius (2011); Hobara et al. (2011), linear spring-

like behavior was found for hopping with a smaller frequency than fp, Figure 4.3,

contradicting findings of Farley (1991). However, this is only true if the global force-

length function is based on momentary leg length. Though, this approach implicitly

assumes a constant rest length of the leg and may limit the interpretation of leg-

spring behavior, as substantial changes in rest length (up to 0.4LTD for “1.2 Hz

II”) were found here. Changes in rest length were not taken into account by the

aforementioned studies. However, doing so significantly changes the patterns of the

FLF on leg level during hopping, Figures 4.3 and 4.8, and facilitates interpretation

of leg function and control.
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5. Conclusion and Outlook

5.1. Conclusion

Adjustable spring systems are widely developed and used in engineering, e.g. Van

Ham et al. (2007); Wolf and Hirzinger (2008); Jun and Clark (2009); Galloway

(2009). In order to apply theses systems, clear guidelines how to tune system stabil-

ity are required. This thesis presents a theoretical framework for applying variable

leg stiffness in locomotion, the variable-leg-spring (VLS) concept. A clear relation-

ship between rest-length and leg-stiffness variation is required for stable hopping

(rest-length increase, leg-stiffness decrease). Nevertheless, different individual leg

adjustments for a given stability level may be selected. Thus, additional goals and

constraints (e.g. robustness, energy efficiency, range of ground-reaction force, range

of leg compression) can be taken into account. However, practical considerations for

implementation in engineered systems need to be integrated into these concepts.

The key feature of the VLS control scheme is functional damping via leg softening

during contact. Additional viscous damping improves stability and eases control,

but is less energy-efficient than functional damping. Such control resembling the

VLS concept may be encoded in biological musculo-skeletal systems via neural pro-

grams, e.g. the λ-model describing actuation of the ankle joint (Micheau et al.,

2003). Experimental data suggest that the visco-elasticity of bouncy gaits is not

fully described by a parallel arrangement of linear elasticity and additional velocity-

dependent damping: For instance, velocity-dependent damping predicts non-zero
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ground-reaction forces at the instant of touch-down. These are not observed in hu-

man hopping, e.g. Kuitunen et al. (2011). Secondly, takeoff would take place while

the leg is still compressed. Functional damping as investigated here avoids these

discrepancies with respect to experimental data.

Muscle-like properties improve hopping stability and robustness at cost of effi-

ciency. Neural control enables the muscle to behave more spring-like. The level

of stability and energy efficiency can be tuned on demand, with completely elastic

beavior as one extreme (perfect efficiency, neutral hopping stability).

Combining stance-leg control, as described by the VLS concept, and swing-leg

control of Blum et al. (2010), provides additional advantages.

During human hopping, leg-spring parameters, i.e. leg stiffness and rest length,

evolve in a non-linear way during stance, even though center-of-mass dynamics re-

semble that of a linear spring-mass system. Non-linearity of the leg-spring param-

eters was no prerequisite, but a result of data analysis. Furthermore, leg-stiffness

and rest-length profiles differ distinctively for slow and fast hopping, implying that

control may depend on the rate of movement.

5.2. Future Work

In order to translate leg protocols proposed in this thesis to an engineered system,

a number of important considerations have to be made. For example, stable, robust

and efficient hopping can be achieved by appropriate parameter strategies. However,

the differences resulting from linear-in-time and velocity dependent leg stiffness sug-

gest that these properties may be influenced by the used actuation protocol, which

relies on continuous parameter variations throughout the whole contact. Variation

of spring parameters only during part of ground contact may allow for more ben-

eficial combinations of gait stability, robustness and energy efficiency, but was not

addressed here. Alternative protocols have been proposed, e.g. actuation at the in-
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stant of maximum leg compression (Raibert, 1986), actuation starting before and

ending after the instant of maximum leg compression (“actuator phasing”; Cham

and Cutkosky 2003), or actuation between maximum leg compression and takeoff

(Kalveram et al., 2010). The question remains open which time window is most

beneficial to achieve stable and robust locomotion. The insights on the variability

of leg properties in human hopping presented here may serve as a stepping stone in

answering this question.

Vertical hopping may be interpreted as running with vanishing horizontal velocity,

vhor ≡ 0, and thus as a subset of running gaits. Hence, the VLS concept can be

generalized to include non-zero horizontal velocity, i.e. running gaits, in a natural

way. From there, also double support of the point mass with two legs, like in walking,

may be included.

Variable leg properties during stance can also be caused by leg segmentation

(Rummel and Seyfarth, 2008). Therefore, a more detailed analysis on how changed

joint stiffness affects leg stiffness and thus orbital stability during locomotion would

be of interest. Together with leg segmentation, the effects of leg segment masses

could be investigated. This would allow to investigate impacts which have been

neglected in this thesis.

Following the approach of interpreting natural gait variability not as perturba-

tions, but rather incorporating it as a fundamental property into biomechanical

models, it is straight-forward to combine the VLS concept with left-right asym-

metries of the locomotory system (Merker et al., 2011). Especially understanding

and dealing with the energetic requirements induced by asymmetric legs is of great

importance for the development of artificial legged systems.

For cyclic locomotion, stance-leg control can naturally be complemented by a

matching swing-leg control (Blum et al., 2010). The results presented in Section

3.2.2 suggest benefits with respect to the control effort. With combinations of stance-

and swing-leg control, more general and realistic control schemes based on the VLS
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concept may be derived, generating gait patterns that are stable against kinematic

as well as energetic perturbations.

Finally, the VLS concept may serve as a tool to guide the development of artificial

muscles as a composition of mechanical structures which can be tuned by control

schemes (Haeufle et al., 2012). In return, muscle models may help to answer the

question how variable stiffness can be understood in terms of muscle-like properties.

Thus, it is important to compare these different approaches in more detail. For

instance, here a hybrid strategy was used to calculate activation states in the tem-

plate muscle-model of Haeufle et al. (2010) corresponding to hopping trajectories

predicted by the VLS model. In a next step, these activation patterns have to be

reapplied to the template muscle-model in order to check if they actually generate

stable hopping. Following this approach, it may be possible to construct building

blocks which could be combined to more complex systems, e.g. with multiple joints

or biarticular coupling, capable of accomplishing a multitude of complex tasks, e.g.

bouncing, balancing, kicking and so on.
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mass running. In Rüdiger Dillmann, Jürgen Beyerer, Christoph Stiller, J. Marius
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